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In this lecture, | will be considering signals from the frequency perspective. This is
a complementary view of signals, which consider signals with frequency as the
independent variable instead of the time, and is fundamental to the subject of
signal processing.

Central to this are two linear transformations: the Fourier Transform and the
Laplace Transform. Both will be considered in later lectures.

Remember, linear transforms obey the principle of superposition (as in linear
circuits you learned from Electronics 1 last year).




Example — Seimic signal measured in Alaska due to
Sumatra Earthquake in 2004
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Let us take a concrete example. 2004 earthquake in Sumatra in Indonesia caused
seismic wave travelled around the world and was recorded at three geostations in
Alaska. These were recorded as electricals signals and available for scientist to
analyse and understand the impact of earthquakes.

This example is taken from MathWork’s excellent online tutorial that you can take if
you wish. The link is given below, but you would need to be a registered user of

Matlab before you can gain access.

https://matlabacademy.mathworks.com/details/signal-processing-
onramp/signalprocessing



https://matlabacademy.mathworks.com/details/signal-processing-onramp/signalprocessing
https://matlabacademy.mathworks.com/details/signal-processing-onramp/signalprocessing
https://matlabacademy.mathworks.com/details/signal-processing-onramp/signalprocessing
https://matlabacademy.mathworks.com/details/signal-processing-onramp/signalprocessing
https://matlabacademy.mathworks.com/details/signal-processing-onramp/signalprocessing

Three stations recorded data for analysis
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The earthquake data at the three states looks very different as shown in the slides.

The time domain signal recorded at the WANC station looked very different from
those from PAX and HAARP stations. It is a great example to demonstrate the
limitation of time domain view of a signal.

However, if we plot the power spectrum of these signals, the truth starts to
emerge!



Frequency domain view of signal — more informative
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All three stations in fact captured similar low frequency activities (<0.1Hz) while
only the WANC station managed to capture some high frequency activities (at
around 10HZ) as well. Further, this high frequency activies swarmed the time
domain signal, which made it rather difficult to interprete what’s going on.

This example illustrates the value of analysing signals in frequency instead of time
domain.



Prediction of Tides
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Frequency analysis (also known as harmonic analysis) was explored centuries ago,
initially motivated by the understanding and prediction of the tides. The
foundational work was done by Isaac Newton, whose gravitation formulation
explained why the Moon would exert attractive forces on the ocean to cause the
water level to go up and down depending on Moon'’s distance from Earth. Since
Earth rotates once per 24 hours, and Moon rotates around Earth once in 28 days,
the periodicity of the tides due to the Moon (lunar tides) is 24 hours 50 minutes.
(The extra 50 minutes is because by the time Earth rotated once, Moon has moved
1/28 of its orbit.)

The Moon is not the only cause of the tides. The Sun, though much further away, is
much larger than the Moon. It also exerts a gravitational force on the ocean.

There are many many other factors that affect the level of water in the ocean at a
particular location, but Moon, Sun and Earth’s rotational orbits, which are ALL
periodical, contribute most to the tides.

Fourier’s harmonic analysis was used by William Thomson to perform tide
prediction while Pierre Laplace derived the equations to model the dynamic
behaviour of the flow of water due to these forces.



Periodicity of the Tides
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A plot of the water level vs time shows the periodicity clearly. There are two high
tides in roughly a 24 hours (+ 50 minutes) period. The peak levels varies depending
on whether it is the first tide or the second tide of the day. The higher level
corresponds to the Moon being directly above the location on Earth, while the
second high tide corresponds to the Moon being on the opposition side (and the
swell is due to centrifugal force caused by the spin of Earth and the Moon).

Zooming out in time (lower plot where x-axis is in hours) shows the effect of the
Sun on the tides during a typical month.



Tides decomposed into periodic constituents
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Therefore each factor that affects the tides at a particular location on Earth can be
model as a sinewave with a particular frequency and phase (relative to others). The
amplitude of the sinewave is a measure of how strong that factor is on the tide. If
we have a good model for each factor, tides can be predicted by adding all these
sinewave together. This is the basis of Fourier or Harmonic analysis.

As shown above, there are many such factors but five or six of these dominate. If
we take real-life tides data and calculate the frequency spectrum of the water level,
we obtain the amplitude (water level) vs frequency. There are many peaks. The
most significant is M2 — this is the effect of the Moon alone. Its periodicity is just
below 2 per day (24 hours 50 minutes). The second most significant (for this
location ) is N2. This is due to the fact that the orbit of the Moon around the Earth
is not a perfect circle, but an ellipse. Further, the Moon does not rotate around the
Earth as its centre. That deviation resulted in N2. Finally S2 accounts for the bulk of
the effect of the Sun on the tides and has a period of 2 per day.

The Moon also affects the tide in a way that it repeats each time the Earth spins,
causing O1 and K1. There are many other constituent components, but they are
much small.

According to NOAA of the US Government, there are 37 constituent components
that can be take into account.

https://tidesandcurrents.noaa.gov/harcon.html?id=9410170



https://tidesandcurrents.noaa.gov/harcon.html?id=9410170

Kelvin’s Tide Prediction Machine

First tide prediction computer B
5

William Thomson (Lord Kelvin)

PYKC 12 Jan 2026 DESE50002 - Electronics 2 Lecture 3 Slide 8

Lord Kelvin (William Thomson) was the first to build a mechanical machine (or
analogue computer) to perform prediction of the tides. Each pulley model one
harmonic factor. The summation is performed by the strings on the pulley which is
attached to a pen on the right end. This pen draws the predicted level on a drum of
paper which rotates. In this way, a plot of tide level vs time can be obtained.

Years later, A.T. Doodson refined the design to produce a much better prediction
machine which included many more constituent components. This tide prediction
machine can be seen working in the Science Museum in Liverpool.



Animation of the Tide Prediction Machine
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Here is a animation of the Tide Prediction Machines with 7 constituent components
creating a prediction. Time travels from right to left.

You can try out this animation written in Java here:

https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3



https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3
https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3
https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3
https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3
https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3

Time vs Frequency view of a sinewave

+ Sinewave (sinusoidal
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¢ Same sinewave in
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If we have a time domain sinewave as shown here, storing this signal takes a lot of
memory. You would need to sample the signal frequency at different time points.

However, if you consider this as a plot of amplitude vs frequency, it appears as an
impulse function at a certain frequency value — one single amplitude! Isn’t this

simpler and clearer?

Not shown here is the phase information of the sinewave, which is determined by
the starting phase of the sinusoidal function at t=0. This is the frequency view of

the sinewave signal.

In other words, you can describe a sinewave by its frequency, its phase and its

amplitude:

x(t) = Asin(wt + ¢)

Since cos x = sin (x + E) , we can equally characterize a sinusoidal signal as a cosine

function:

x(t) =Acos (wt+ ¢ — 7—2T)

10



Two sinewaves
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Now if we add a sinewaves at 440Hz and to another at 1000Hz (at half amplitude of

the 440Hz), we get a more complex time domain waveform as shown.

It is not obvious what made up this time domain signal. However, view in the
frequency domain, we clearly see two impulses at the corresponding frequencies,

one half the height of the other.

11



Key idea — Fourier’s theory

+ Basic idea — any time domain signal can be constructed from weighted
linear sum of sinusoidal signals (sine or cosine signals) at different
frequencies.

¢ Forexample:
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In fact, Fourier has long proven that any time domain signal can be represented as a

linear combination of sinewaves at different frequencies, suitably weighted by
some coefficients. Shown here are three sinewaves at f, 3f and 9f, of different
amplitudes. When added together, we get the approximation of a square wave

shown in RED.

When a time-domain signal is resolved into various frequency components, we call

the plot of amplitude vs frequency the “amplitude spectrum” of the signal.

12



Spectrum — Frequency domain representation

+ Instead of having to store individual time samples, we only need to store the
amplitude, frequency and phase of each sinusoidal signal.

Time domain

Time

& Spectrum of signal in frequency domain is represented by amplitude value
for each frequency. There is also phase vs frequency, which is not shown
here.
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Now instead of complicated time domain sample of the approximate square wave
signal, we only need to use three values at f, 3f and 9f. Here we assume all the
phases are zero, i.e. all the three sinusoids start as 0 at t=0.

13



Another Example
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Here is another example of a signal composed of four sinusoids.

The important message here is that we can do the inverse. Instead of constructing
the time domain signal by combining the sinusoidal waveforms, we can go the
other way: take a time-domain signal and divide this (or resolve it) into various
sinusoidal signals, at different frequencies with different amplitude and phase. This

is the foundation of Fourier transform.
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Periodic Signal & Fourier Series

A periodic signal x(t) with a period of To has the property:
x(t) =x(t+T, forallt

NVAND A YA
e

Fourier series expresses x(t) as a weighted linear sum of sinusoids (or
expontentials) of the fundamental frequency fo = 1/Tg and all it harmonics nfo where
n=23,4...

x(t) = ag + Y-, (a, cosnwyt + b, sinnwyt )  for all integers n

wy is called the fundamental frequency such that (f; in cycles/sec or Hz, w, in radians/sec)
wo=2nfy=2n/T, and nw, are the harmonic frequencies

a, is the DC (mean) value of x(t) and a,, , b,, are the Fourier coefficients at the

frequency nw,
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You have been taught Fourier series in first year maths course. Here is a quick

revision.

A periodic signal (or function) is one that repeats itself in time. The interval
between repetition is the period To.

A periodic signal x(t) can be mathematically written as a sum of sine and cosine

waves with different weighting (or coefficients). The frequencies of the sine/cosine

waves is determined by the periodicity of the signal To, which determines the

fundamental frequency fo = 1/To.

Remember frequency can be expressed as cycles/second (Hz) or as radians/sec.

15



How to find a;?

x(t) = ag + Xn=1(a, cosnwyt + by, sinnwyt )

+ To determine a,, we multiply both sides by cosmw,t and intergrate over Tj:
T, T,

fx(t)dt = aof dt
+Z fcosnwot dt
n= 1
+Z fsmnwot dt
n=1

o 27 and 3 terms integrates to zero over one period of time. Therefore only the first
term survives:

fOT" x(t)dt = a, fOT" dt =a, T,
¢ Therefore
ap = T_lo-fOTo x(t)dt
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Let us now explore how to compute the various coefficients in the Fourier series.

To do this, we simply integrate both sides of Fourier series equation. Since the
right-hand-sides of the equations consists of linear sum of terms, we can perform
the integration operation one term at a time.

All the cosine and sine functions must integrate to zero over one entire period of
the signal. Therefore, the only term remaining is the ag term! This is simply the
average value (or DC) of the signal, which can be calculated by integration over one
period of the signal.

16



How to find a, and b, coefficients? (1)

x(t) = ag + Xn=1(a, cosnwyt + by, sinnwyt )

+ To determine a,, we simply intergrate both sides of the equation over one period T:
To To

f x(t) cosmwyt dt = aoj cos mw,t dt
T,
[eo)
+ Z an J Cos nwyt cos mwyt dt
n=1 2
To

(o]
+ Z b, J sinnwyt cosmwyt dt
n=1 7,
¢ But:

T T, .
JyCcosmawotdt = 0 and [ °cosnwot cosmwetdt=0 if n#m

¢ When n=m,

T, T,
Jy? cosmayt cosma,t dt ==
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The a, coefficients can be computed by multiplying both sides by the function
cosmwyt and then perform integration over one period of the signal.

The ag term integrates to zero.

The cosnwyt cos mwyt term also integrates to zero because of the trigonometric
. . 1
identify:  cosx cosy = > [cos(x —y) + cos(x +y)] forallnzm.

However for n = m, the integral is:

T T, 1 T,
J* cosmwot cosmw,t dt = fo"—z [1 4+ cos 2mw,t]dt = 30

17



How to find a, and b, coefficients? (2)

x(t) = ag + Xn=1(a, cosnwyt + by, sinnwyt )

o Therefore, the ONLY term that survives after multiply by cos mw,t and integration
is:

T, T,
Jy 2 x(@®) cosma,t dt = a,, >

e Hence, a,= TifOT" x(t) cosnwetdt (m=n)
0

« Similarly to find b ,, multiply x(t) by sinmw,t and integration over T,:

fOT" x(t) sinmawyt dt = bm%

e Hence, b,= Ti fOT" x(t) sinnw,t dt
0

PYKC 12 Jan 2026 DESE50002 - Electronics 2 Lecture 3 Slide 18

Therefore the only surviving term of these operations is when n =m.

The significant implication of this derivation is:

To find the coefficient a, of the nth harmonic frequency component, mutilply the
signal x(t) with cos nwyt and integrate over one period. The result after
multiplying by 2/To is the coefficient.

Similar, we can find b, with the same operation, but now we multiple the signal
with sine function instead.

18



Compact form of Fourier Series

x(t) = ag + Xn=1(a, cosnwyt + by, sinnwyt )

+ A more compact form of the Fourier Series is derived with the trigonometric identity:

C cos(wyt + 8) = C cos B coswyt — C sin @ sin wyt
= acoswyt + bsinwyt

x(t) = ag + =1 (a, cosnwyt + by, sinnwyt )

=Cy+ Xn=q1 Cpcos(nwet+ 6,)

where Co = ao
C = ,a 24 p 2 amplitude
n — n n

6, = tan~! — (%1) phase angle
n
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Using the trigonometric identities, we can combine the sine and cosine terms in the

Fourier series as shown in the slide above.

Why is this useful? Now we express the Fourier series using one coeffient (C,)
instead of two (a, and b,,).

C, is the amplitude of the signal at frequency nw,. A plot of C,, at different
harmonic frequencies gives us the amplitude spectrum.

0,, is the phase of the signal at frequency nw,. A plot of 8, at different harmonic

frequencies gives us the phase spectrum.

19



Fourier Series of common signals (1)

Time Domain Frequency Domain
a. Pulse . A gy = Ad
-
FLLLL o = 24 sagoma
nit
o T | -
o+——t—1 | =
t=0 0 f 2 3f 4 Sf 6f (d = 0.27 in this example)
b. Square A a; =0
o - 24 m[ﬂ]
f HHHH gt
+ b, =0
o1 1 !
t=0 0 f 2 3f 4 SFf 6f (all even harmonics are zero)
c. Triangle A- gy = 0
e 44
I XVAVAVA# BNCE S
+ : ) b, =0
t=0 0 i' Z'f '_’;f 4'f jlf G'f (all even harmonics are zero)
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These two slides shows the Fourier series coefficients for a number of common
signals you might encounter. It is provided here as useful reference.

20



Fourier Series of common signals (2)

d. Sawtooth As a =0
T a, =0
A 747%%4 A
X b, = —
oy e
t=0 0 f 2 3f 4 S5f 6f
e. Rectified A ag = 24/n
+ " a(ani-1)
0  ERPEP S by = 0
t=0 0 f 2 3f 4 S5f 6f
f Cosine wave A~
1‘ a = 4
4 .
(all other coefficients are zero)
0
t=0 0 f 2 3f 4 Sf 6f
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Fourier series of an even signal

Ty m 21 3 t —>

+ The Fourier series for the square-pulse periodic signal shown above is:

1

(t) = +2( t ! 3t+1 5t ! 7t + )
X = 2 p Cos 3COS 5COS 7COS

+ The symmetry of this even signal result in three properties:

1. Such symmetry implies an even function. Therefore the Fourier series
representation only has cosine terms which are also even functions.

2. This symmetry at t = 0 also result in phase angle at all harmonic frequencies = 0.
3. It only has odd harmonic components — no even harmonic components.
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Consider a periodic pulse signal between 0V and 1V with a period of mand is

symmetrical about t = 0. This signal has a duty cycle of 50% (or mark-space ratio of
1).

Such a signal has a Fourier series as shown — the derivation of this is left as a

tutorial problem. You should be able to apply the formula in the previous slides to
derive this equation.

The above three observations are useful. The symmetry at t = 0 means that sine
components are not present — only cosine terms are left. Why? Inclusion of any

sine terms would destroy the symmetry.

All the cosine terms must have a phase of 0. If not, you will also not get the
symmetry shown here.

Finally, the Fourier series only contains odd harmonics (i.e. 1, 3, 5 etc.). Even
harmonics will also destroy the symmetry (or evenness of the signal)!

22



Fourier coefficiences and waveshaping
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What are the physical significance of the various harmonic component on the
shape of the time domain waveform? Here we gradually increase the number of
frequency components from DC (OHz) up, adding one extra harmonic component
each time. Clearly the lower frequencies (DC term and the fundamental frequency

component) already give the basic shape of the waveform. Adding more and more
harmonic components enhances the details including the edges of the signal.

23



A Vector view of Signal

¢ To understand why a signal can be represented by linear sum of sinusoidal
waveforms, it is useful to consider electrical signals as VECTORS.

+ A vector is specified by its magnitude (or length) and its direction.

+ Consider two vectors g and x. If we project g onto x,
we get cx, where c is a scalar (i.e. constant with no
direction).

+ If we approximate g with cx, then

g=cx+te

¢ ¢, the error vector, is minimum when it is

perpendicular to x.

+ cx is known as the projection of g onto x.

Dot product

+ It can be shown (in the notes below) that:

_g°X 1

c = —
x-x [|x]?

g-X g-x = ig||x|cos 6
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Another useful view of signals is to regard them as vectors.

If we have a signal (vector) g, we can ask the question: how much g is in common
with the vector x? The answer is to find the projection of g onto x.

If we want to approximate the vector g with x, we can write: g =cC x + e where
C is a constant value, and e is the error, which is minimized when e is perpendicular
to x.

This idea of projection is important. If g contains NO component similar to x, then
g is perpendicular to x, and the projection is 0 and ¢ = 0.

The projection of g onto x is also mathematically express as the “dot product”
gex=|g||x| cosf

If two vectors have zero dot-product (or the projection of one onto the other is
zero), they are known as orthogonal to each other.

To calculate an express for the constant ¢, simple trigonometric gives:
c|x|=|g| cos 6
Therefore

clxf=

gl [x|cos O =g x
Hence,

= (] / L] _i (]
C=geX/XeX=1o5 g X

24



Orthogonal Set of signals

« |If vector g is at right angle to vector x, then the projection of g and x is zero.
These two vectors (or signals) are known to be orthogonal.

+ |t can easily be shown that two sinusoidal signals of DIFFERENT
frequencies are orthogonal to each other.

+ The complete set of sinusoidal signals (i.e. of all possible frequency) forms a
COMPLETE orthogonal set of signals.

+ What this means is that ALL time domain signals can be formed out of
projects (or components) onto these these sinusoidal set of signals!

¢ This is the foundation of Fourier Series and Fourier Transform, which will
be discussed further at the next Lecture.
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This idea of projection is important. Because as it turns out, the sinusoidal signals
(of all frequencies) has two interesting characteristics:

1. Two sinusoidal signals of different frequencies are orthogonal to one another.

2. The set of all sinusoidal signals form a complete or closed set. This means that
you can always resolve any time domain signals into sum of projects to the set
of all sinusoidal signals.

This is why sinusoidal signals are so important, and why Fourier transform exists!

25



Three Big Ideas

1. Time domain view of a signal is often insufficient. It is often more
informative to consider how the signal would appear as a function of
frequency, in the frequency domain.

2. Any time varying signal can be decomposed into sinusoidal constituent
components of specific frequencies, phases, and amplitudes, just like the
tidal level. This is the main idea of Fourier.

3. Two sinusoidal signals of different frequencies are orthogonal to each
other, meaning that they have nothing in common, and it is not possible to
“produce” one from the other through any linear methods.
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This idea of projection is important. Because as it turns out, the sinusoidal signals
(of all frequencies) has two interesting characteristics:

1. Two sinusoidal signals of different frequencies are orthogonal to one another.

2. The set of all sinusoidal signals form a complete or closed set. This means that
you can always resolve any time domain signals into sum of projects to the set
of all sinusoidal signals.

This is why sinusoidal signals are so important, and why Fourier transform exists!
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